[wp_tech_share]

 

Data centers are the backbone of our digital lives, enabling the real-time processing of and aggregation of data and transactions, as well as the seamless delivery of applications to both enterprises and their end customers. Data centers have been able to grow to support ever-increasing volumes of data and transaction processing thanks in large part to software-based automation and virtualization, allowing enterprises and hyperscalers alike to adapt quickly to changing workload volumes as well as physical infrastructure limitations.

Despite their phenomenal growth and innovation, the principles of which are being integrated into service provider networks, data centers of all sizes are about to undergo a significant expansion as they are tasked with processing blockchain, bitcoin, IoT, gigabit broadband, and 5G workloads. In our latest forecast, published earlier this month, we expect worldwide data center capex to reach $350 B by 2026, representing a five-year projected growth rate of 10%. We also forecast hyperscale cloud providers to double their data center spending over the next five years.

Additionally, enterprises are all becoming smarter about how to balance and incorporate their private clouds, public clouds, and on-premises clouds for the most optimal and efficient processing of workloads and application requests. Similar to highly-resilient service provider networks, enterprises are realizing that the distribution of workload processing allows them to scale faster with more redundancy. Despite the general trend towards migrating to the cloud, enterprises will continue to invest in on-premises infrastructure to handle workloads that involve sensitive data, as well as those applications that are very latency-sensitive.

As application requests, change orders, equipment configuration changes, and other general troubleshooting and maintenance requests continue to increase, anticipating and managing the necessary changes in multi-cloud environments becomes exceedingly difficult. Throw in the need to quickly identify and troubleshoot network faults at the physical layer and you have a recipe for a maintenance nightmare and, more importantly, substantial revenue loss due to the cascading impact of fragmented networks that are only peripherally integrated.

Although automation and machine learning tools have been available for some time, they are often designed to automate application delivery within one of the multiple cloud environments, not across multiple clouds and multiple network layers. Automating IT processes across both physical and virtual environments and across the underlying network infrastructure, compute and storage resources have been a challenge for some time. Each layer has its own distinct set of issues and requirements.

New network rollouts or service changes resulting in network configuration changes are typically very labor-intensive and frequently yield faults in the early stages of deployment that require significant man-hours of labor.

Similarly, configuration changes sometimes result in redundant or mismatched operations due to the manual entry of these changes. Without a holistic approach to automation, there is no way to verify or prevent the introduction of conflicting network configurations.

Finally—and this is just as true of service provider networks as it is of large enterprises and hyperscale cloud providers—detecting network faults is often a time-consuming process, principally because network faults are often handled passively until they are located and resolved manually. Traditional alarm reporting followed by manual troubleshooting must give way to proactive and automatic network monitoring that quickly detects network faults and uses machine learning to rectify them without any manual intervention whatsoever.

 

Automating a Data Center’s Full Life Cycle

As the size and complexity of data centers continue to increase and as workload and application changes increase, the impact on the underlying network infrastructure can be difficult to predict. Various organizations both within and outside the enterprise have different requirements that all must somehow be funneled into a common platform to prevent conflicting changes to the application delivery layer all the way to the network infrastructure. These organizations can also have drastically different timeframes for the expected completion of changes largely due to siloed management of different portions of the data center, as well as different diagnostic and troubleshooting tools in use by the network operations team and the IT infrastructure teams.

In addition to pushing on their equipment vendor and systems integrator partners to deliver platforms that solve these challenges, large enterprises also want platforms that give them the ability to automate the entire lifecycle of their networks. These platforms use AI and machine learning to build a thorough and evolving view of underlying network infrastructure to allow enterprises to:

    • Support automatic network planning and capacity upgrades by modeling how the addition of workloads will impact current and future server requirements as well as the need to add switching and routing capacity to support application delivery.
    • Implement network changes automatically, reducing the need for manual intervention and thereby reducing the possibility of errors.
    • Constantly provide detailed network monitoring at all layers and provide proactive fault location, detection, and resolution while limiting manual intervention.
    • Simplify the service and application provisioning process by providing a common interface that then translates requests into desired network changes.

Ultimately, one of the key goals of these platforms is to create a closed-loop between network management, control, and analysis capabilities so that changes in the upper-layer services and applications can drive defined changes in the underlying network infrastructure automatically. In order for this to become a reality in increasingly complex data center network environments, these platforms must provide some critical functions, including:

    • Providing a unified data model and data lakes across multiple cloud environments and multi-vendor ecosystems
      • This function has been a long-standing goal of large enterprises and telecommunications service providers for years. Ending the swivel-chair approach to network management and delivering error-free network changes with minimal manual intervention are key functions of any data center automation platform.
    • Service orchestration across multiple, complex service flows
      • This function has also been highly sought-after by large enterprises and service providers alike. For service providers, SDN overlays were intended to add in these functions and capabilities into their networks. Deployments have yielded mixed, but generally favorable results. Nevertheless, the principles of SDN continue to proliferate into other areas of the network, largely due to the desire to streamline and automate the service provisioning process. The same can be said for large enterprises and data center providers.

Although these platforms are intended to serve as a common interface across multiple business units and network layers, their design, and deployment can be modular and gradual. If a large enterprise wants to migrate to a more automated model, it can do so at a pace that is suited to the organization’s needs. The introduction of automation can be done first at the network infrastructure layer and then introduced to the application layer. Over time, with AI and machine learning tools aggregating performance data across both network layers, correlations between application delivery changes and their impact on network infrastructure can be determined more quickly. Ultimately, service and network lifecycle management can be simplified and expanded to cover hybrid cloud or multi-vendor environments.

We believe that these holistic platforms that bridge the worlds of telecommunications service providers and large enterprise data centers will play a key role in helping automate data center application delivery by providing a common window into the application delivery network as well as the underlying network infrastructure. The result will be the more efficient use of network resources, a reduction in the time required to make manual configuration changes to the network, a reduction in the programming load for IT departments, and strict compliance with SLA guarantee to key end customers and application provider partners.

[wp_tech_share]

 

A year ago, we made a number of predictions for the Service Provider Router market. As we move full steam ahead into a new year, we take a look back at those 2021 predictions, and how we think they apply to the SP Router market in 2022.

 

The Market Returns to Normalcy

In some ways, SP Router market conditions returned to pre-pandemic states in 2021, but in other ways, they did not.

From a quantitative perspective, the Service Provider Router market rebounded nicely in 2021 to pre-pandemic levels. Our preliminary estimates show that market revenues increased at a mid-single-digit rate to a record level. As we had predicted, Telecom and Cloud SPs increased spending in 2021 to boost IP network capacity and reset operational metrics to better align with the new traffic levels and patterns brought on by the COVID-19 pandemic.

However, supply chain disruptions and resource constraints continued to negatively affect product delivery and deployments throughout the year. While it is difficult to quantify the impact of these problems, consistent feedback from vendors, SPs, and distribution channels lead us to conclude that SP Router market revenue was depressed in 2021.

The good news for 2022 is that we expect underlying demand trends to continue driving growth of the SP Router market. The bad news is that we expect supply chain disruptions and resource constraints to persist throughout 2022. While we do not know when these disruptions will diminish—in 2022 or 2023—we predict that the return to normalcy will not be without problems. The volatile order growth and expanding backlogs that created so many challenges over the past two years will eventually subside. However, as order growth rates decelerate and backlogs shrink when supply and resource constraints improve, the challenges of balancing supply and demand will create new headaches for many companies.

 

400 Gbps Routers Become Meaningful

Market demand for routers that support 400 Gbps technologies steadily gained momentum throughout 2021 and became an industry focal point by the end of the year. Our preliminary estimate for 400 Gbps router port shipments shows an increase of more than ten times from 2020 to 2021–an excellent start for the early-adopter phase of emerging technology.

2022 is shaping up to follow on the initial success of 400 Gbps capable routers. For this year, we predict rapid demand growth for 400 Gbps routers that will firmly establish network capacity transformations over the next five years.

 

IP Mobile Backhaul Upgrades Accelerate

Our prediction of IP mobile backhaul market acceleration in 2021 proved to be correct for all major geographies except China. Our preliminary estimates for IP mobile backhaul revenue for markets excluding China ticked up at a double-digit rate in 2021. The China market experienced a slight decline in 2021, but still represented more than a third of the global market.

For 2022, we predict continued growth for IP mobile backhaul upgrades outside of China. 5G RAN deployments are the basis for most of the growth and the longer-term prospects for 5G are quite positive.

 

Disaggregated Routers Become a Real Thing

The market for disaggregated routers grew significantly in 2021, and our initial estimates point to a triple-digit revenue growth rate for the full year. Granted, the revenue growth was off of a small base, but another positive sign was that throughout 2021, the ecosystem for disaggregated routers continued to expand across hardware, software, and integration elements.

The disaggregated router market proved to be real in 2021, but it remains to be seen whether the market can become significant. We see many positive signs of opportunities such as a growing ecosystem and increasing trial activities. However, we predict that in 2022, the portions of the disaggregated router market will increasingly encounter the challenges that many emerging technologies face—ongoing interruptions from the COVID-19 pandemic, competitive responses from incumbent players, and resistance to change large and established infrastructures.

[wp_tech_share]

Before looking at 2022, let’s look back one year and see how we did in 2021 compared to what we were thinking in 2020. Just a reminder when looking at 2021, we only have three quarters of actual results and the fourth quarter is still an estimate. The current projected 2021 revenues for the Mobile Core Network (MCN) market are predicted to come in 13% below what we thought at the end of 2020. However, 2021 is expected to have a growth rate of 6% Y/Y. For 2022, we project a growth rate of 8% Y/Y.

So what happened? The 2021 4G MCN market came in 13% below expectations, apparently, due to Communication Service Providers (CSPs) having enough installed capacity to carry them through the pandemic, or the pandemic slow down the installation of more capacity. We now project the 4G MCN growth rate of -8% Y/Y for 2021 and flat Y/Y for 2022.

 

The 2021 5G MCN market came in 10% below our expectations from 2020, and this is due to the lack of more aggressive 5G Standalone (SA) network buildout than anticipated. We count 13 CSPs that commercially deployed 5G SA networks for enhanced Mobile Broadband (eMBB) in 2021, and they were nowhere close to the aggressiveness in breadth and depth of the buildouts that we saw by the Chines SPs in 2020, or for that matter in 2021. We thought all three CSPs in Korea would have launched by now, but so far only KT has launched. And we expected AT&T and Verizon in the US, and the CSPs in Switzerland to have launched 5G SA in 2021. In spite of these disappointments, the projected growth rate for 2021 is 61% Y/Y for 2021 and lowering to 18% Y/Y for 2022 due to the expected decline in growth rate by the Chinese CSPs.

 

 

We were closer to the IMS Core forecast for 2021, only being 3% below the current forecast for 2021. The growth rate for 2021 is now projected to be 5% Y/Y for 2021 and 8% for 2022 as more CSPs upgrade their voice networks to VoLTE or VoNR in preparation for their 5G SA launches.

The outlook is still positive for the overall MCN market growth rate with a 6% Y/Y for 2021 and 8% for 2022 being driven by the expansion of existing 5G SA networks and new 5G SA networks poised to launch for the 5G MCN and IMS Core markets.

[wp_tech_share]

 

Broadband Focus Will be Squarely on Fiber and Increased Competition in 2022

The emphasis on and investments in advanced broadband access networks around the world over the last two years shows no signs of abating in 2022. Despite the headwinds of component and labor shortages, inflation, and logistics snafus, broadband network buildouts and upgrades, coupled with net subscriber additions are projected to result in over $15.5 B in equipment spending in 2021. With the sustained influx of new capital from both governments and private equity, 2022 spending should be equally strong.

The 2021 results were somewhat of a surprise to some, as there were expectations that students returning to in-person instruction and workers partially or fully returning to their offices would result in a reduction in home broadband subscriptions that had been added in 2020 at the height of the pandemic. But, net subscriber additions didn’t decline and in fact accelerated throughout 2021. For those of us who have monitored the broadband market for some time, this wasn’t a surprise, as broadband remains one of the stickiest services a provider can offer. Though there is churn, as there is with many services, once broadband is in the home, it more than likely will remain and be integrated into the household budget.

As a result, investments in broadband infrastructure—specifically fiber networks—have skyrocketed, with private equity fueling a growing number of buildouts in North America and Europe. Investing in network infrastructure—which hasn’t been cool since the late 90’s—is suddenly all the rage. As such, the valuations of fiber networks have increased significantly, driven by increased demand for residential broadband, ongoing 5G network buildouts, and an expectation that fiber networks still need hundreds of billions in new investments to keep pace with expected bandwidth demand.

Of course, national Government plans including the RDOF (Rural Digital Opportunity Fund) and Build Back Better programs, as well as tax incentives in the UK and other European countries, intend to cover some of that necessary investment. But that hasn’t pushed private investment to the sidelines. All of this means that 2022—even 2023—should be very strong years for broadband equipment manufacturers.

 

Changes in the Competitive Landscape Will Force Cable Operators to Move Faster

Before discussing the expected impacts on specific broadband technologies and products, it’s critical to look at how sustained investments in fiber and even fixed wireless networks will dramatically alter the competitive landscape in broadband. The biggest change to the overall market that these investments provide is not only availability where it didn’t exist before, especially in the case of rural and underserved markets, but also the introduction of choice where that didn’t really exist before. In North America and a number of Western European countries, realistic consumer choice among multiple broadband service providers has only recently begun to increase. In most areas, the choice has been between cable and DSL, with cable operators able to offer speeds that satisfy increased subscriber requirements, while DSL languishes at sub-50 Mbps speeds. The net result—especially in the US market—was broadband market dominance to the tune of over 65%.

That dominance has certainly benefited cable operators and kept their subscriber base and margins growing in the face of sustained pay-TV service cancellations. But in some cases, it has also not prepared them adequately for the significant changes that are headed their way in the form of new fiber-based competitors. Some cable operator executives have been downright dismissive of the looming threats—especially those coming from fixed wireless.

Tom Rutledge, CEO of Charter Communications, said back in September 2021 that, “We actually look forward to a higher churn environment…We do well with prospects looking to change their services.” In a world where Charter was competing only with DSL providers, the company clearly did well and has continued to excel in pulling away dissatisfied DSL subscribers who required more speed but couldn’t get it, especially during the pandemic.

But going up against fiber providers with consistent gigabit (and even multi-gigabit speeds) is an entirely different story altogether, one in which the MSOs could find themselves in a similar position to previous DSL providers. We have already seen a slowdown in net new broadband subscribers among some of the largest US cable operators. That slowdown has been attributed to (among other things) an expected decline in subscriber churn from DSL providers largely because there are so few left to poach.

But with AT&T, Verizon, Frontier, Ting, Sonic, and other providers posting increasing fiber subscriber additions, at least some of the subscriber slowdown at Charter and others has to be attributed to these subscriber gains being made at the cable operators’ expense. So much for being successful in high-churn environments.

In this new battle, cable operators are also saddled with the consumer perception that they are not providing value even if they are providing the fastest speeds available in a particular area. Part of this perception is due to the longstanding residue of consumers consistently ranking their cable providers at the bottom of the list for value and customer service. It’s one reason why people have dropped (and continue to drop) their pay-TV subscriptions so quickly. Again, so much for being successful in high-churn environments.

So, what does this mean for cable operators, from the perspective of infrastructure investments and technology rollouts? There are a couple of implications:

  1. There will be a growing percentage of tier 1 cable operators who increase their investments in fiber infrastructure. We have already seen a decent number of tier 2 and tier 3 operators in North America opt for the complete replacement of their HFC networks with full fiber. While we certainly don’t expect to see a wholesale cutover among any tier 1 cable operators, we believe this year will see an increase in fiber overbuilding in some of the more competitive markets in order to maintain the perception of parity with fiber competitors.
  2. Tier 1 operators will push very hard to accelerate the DOCSIS 4.0 product availability timeline. We are already seeing hints of this with system vendors pursuing silicon partnerships outside of Broadcom in order to expedite the availability of products, particularly remote-MACPHY devices. We are also already seeing announcements of successful lab trials using both full-duplex DOCSIS and extended-spectrum DOCSIS to deliver multi-gigabit speeds.

In the short term, we fully expect cable operators to continue their current mid- and high-split upgrade projects to increase upstream bandwidth for their DOCSIS 3.1 networks. This will result in sustained DOCSIS channel license purchases through at least the first half of the year and perhaps throughout the year, with a growing percentage of those licenses being supported on vCCAP platforms in support of R-PHY deployments, as well as on R-MACPHY devices.

Speaking of R-MACPHY, the availability of products that adhere to the Flexible MAC Architecture (FMA) specification will accelerate this year, with MAC Manager products moving from the lab to field trials later this year. The availability of these products, while not an absolute requirement for DOCSIS 4.0, are important stepping stones in continuing the further disaggregation of the I-CCAP and vCCAP platforms, which is viewed as an important precursor for many cable operators as they begin their journey to DOCSIS 4.0, either in the form of Extended Spectrum DOCSIS or Full-Duplex DOCSIS. Additionally, some MSOs view FMA as a way to open the door to more fiber deployments, as remote OLTs and ONTs can be managed similarly to cable modems.

Within the home, cable operators are going to move quickly to expand the availability of high-end residential gateways that include both Wi-Fi 6 and, in the US Wi-Fi 6e. Comcast recently announced a new Wi-Fi 6e gateway manufactured by Technicolor that will be reserved initially for those customers taking its gigabit service offering. Comcast’s positioning with the gateway is that it offers the fastest speeds to and within the home. Fiber doesn’t make any difference if the W-iFi gateway in the home is anything less than Wi-Fi 6 or Wi-Fi 6e.

 

Fiber Expansion Will Accelerate

The switch from copper to fiber among the world’s largest telcos really became clear in 2020 and 2021. That trend will accelerate in 2022, in particular, because of the investments made this year in new optical line terminal (OLT) ports. Operators throughout North America, EMEA, and CALA switched more of their capex towards expanding their fiber networks than sustaining their DSL networks. This was clear at Telmex, BT OpenReach, and others. Major projects at Deutsche Telekom, Orange, Proximus, and elsewhere will drive not only more fiber expansion but 10 Gbps deployments using XGS-PON.

Fiber access networks have reached a major tipping point, driven by the simultaneous catalysts of the shift to next-generation fiber technology and the shift to openness, disaggregation, and automation. The world’s largest broadband providers are quickly realizing that the need for increased throughput is matched by the need for a highly-scalable network that can respond quickly to the changing requirements of the service provider, their subscribers, and their vendor and application partners. The need to provision and deliver new services in a matter of hours, as opposed to weeks or months, holds just as much priority as the ability to deliver up to 10 Gbps of PON capacity. Although service providers might have completely different business drivers for the move to open, programmable networks, there is no question that the combination of data center architectural principles and 10G PON technology is fueling a forthcoming wave of next-generation fiber networks upgrades.

The service providers that adopt the combination of 10 Gbps PON and openness will be best prepared to accomplish three major goals:

  1. Deliver the advanced, 10 Gbps capacity, and multi-gigabit services subscribers will expect and require using a cloud-native infrastructure that treats bandwidth and the delivered applications as workflows.
  2. Anticipate and whether rapid increases in traffic demand with a highly-targeted and elastic infrastructure that can be activated without a forklift upgrade.
  3. Develop an access network infrastructure that can process multiple workloads beyond broadband access, including hosted services that can be offered on a wholesale basis, as well as fixed-mobile convergence applications.
[wp_tech_share]

 

Huawei Leads the $100 B Telecom Equipment Market

We just wrapped up the 3Q21 reporting period for all the Telecommunications Infrastructure programs covered at Dell’Oro Group, including: Broadband Access, Microwave & Optical Transport, Mobile Core & Radio Access Network (RAN), SP Router & Switch. The data contained in these reports suggest that the positive trends that characterized the broader telecom equipment market in the first half of 2021 extended into the third quarter, propelling the overall telecom equipment market to a sixth consecutive quarter of year-over-year (Y/Y) growth.

Preliminary estimates suggest the overall telecom equipment market advanced 6% Y/Y in the quarter and 9% Y/Y year-to-date (YTD). The growth in the quarter was underpinned by healthy demand for both wireless and wireline equipment.

While the majority of the suppliers were able to navigate the supply chain situation fairly well in the first half, supply chain disruptions had a greater impact in the third quarter, though clearly this was not enough to derail the positive momentum that has characterized the market over the past six quarters.

The analysis contained in these reports suggests the collective global share of the leading suppliers remained relatively stable between 2020 and 1Q21-3Q21, with the top seven vendors comprising around ~80% of the total market.

Ongoing efforts by the US government to curb the rise of Huawei is starting to show in the numbers, especially outside of China. At the same time, Huawei continued to dominate the global market, still nearly as large as Ericsson and Nokia combined.

Overall, we believe ZTE and Samsung are trending upward while Huawei is losing some ground YTD relative to 2020.

Additional key takeaways from the 3Q21 reporting period include:

  • Positive market sentiment in the third quarter was driven by strong growth in RAN and Broadband Access, which was more than enough to offset weaker trends in Optical Transport.
  • RAN and Broadband Access are also the strongest growth vehicles for the YTD period, fueled by surging demand for 5G, PON, and FWA CPEs.
  • With the pandemic resurging and the visibility surrounding the supply chain weakening, the Dell’Oro analyst team is expecting near-term growth to decelerate – the overall telecom equipment market is now projected to advance 2% in 2022, down from 8% in 2021.

Dell’Oro Group telecommunication infrastructure research programs consist of the following: Broadband Access, Microwave Transmission & Mobile Backhaul, Mobile Core Networks, Radio Access Network, Optical Transport, and Service Provider (SP) Router & Switch.