[wp_tech_share]

NBASE-T technology is significantly impacting the market with the biggest transition we’ve seen in campus switching since 2000.

That’s a bold statement backed up by data and trends we’ve noted in our extensive research in the campus network market. With the new generation of 802.11ax access points supporting NBASE-T ports, this trend will only accelerate. At Dell’Oro Group, we predict a major refresh of the Ethernet Switch Campus market as 802.11ax shipments ramp up, taking NBASE-T to 20 percent of campus switch ports by 2022.  This transition will enable enterprises to transform their networks, support new high bandwidth devices, and provide the “always on” network experience expected today.

One clear example of this growth is in the education market. One administrator we spoke with said they are seeing big differences in their freshman class use even from one year to the next. Each incoming class is taking a step up. They use to plan their network needs based on 3 devices per student, and that has jumped to 5 devices per student in just the past couple years. Devices like Amazon Alexa and gaming devices have become even more prolific, and the number of users has also jumped from 10K to 22K in that same timeframe.

Members of the Dell’Oro Group team including Tam Dell’Oro, Ritesh Patel and myself, recently discussed these findings in a webinar with Peter Jones of the NBASE-T AllianceNBASE-T Campus Network Market Update from Dell’Oro Group includes significant data points, price trends and discussion on the mix between 2.5GE/5GE. Decision makers can use this information to inform their strategic infrastructure plans and purchases.

Dell’Oro Group reports provide more in depth findings on Campus Networks – Wired and Wireless reportEthernet Switch – Campus report, and Wireless LAN report.

We see 802.11ax driving the continual growth and expansion of NBASE-T adoption in a vast range of markets. From the high end to the low end of the market, there is a broader range of product offerings happening in a shorter time frame than with most previous technologies. Across the industry, NBASE-T technology is clearly powering a major inflection point in campus networking.

[wp_tech_share]

Last week, Dell’Oro Group hosted a webinar with the NBASE-T Alliance about recent Campus Network updates.  Spearheaded by users’ need for mobile connectivity everywhere, wireless LAN deployments are heralding in NBASE-T, particularly with the availability of the newest 802.11ax access points. Yet early indicators reveal that 802.11ax adoption is not following historic patterns.

Three disruptions are unfolding:

  • 802.11ax access points will have an amplified impact on the Ethernet network as they connect into the Ethernet network with two ports rather than the traditional one port. One of the Ethernet ports will be either 2.5 Gbps or 5.0 Gbps. This will have a cascading effect through the network.
  • The price premium for 802.11ax will be significantly lower than previous technologies. This suggests that adoption may be faster.
  • China may not lag adoption.

Enterprise class 802.11ax access points with NBASE-T shift wireless LAN from being cannibalistic to Ethernet Switch market sales

The rate of migration of enterprise users away from desktop PCs to laptop and/or tablets has slowed. Some applications and functions, such as CADCAM, and laboratory work are most efficient on desktop PCs. Annual desktop PC shipments appear to be stabilizing.

Most Wireless LAN deployments now expand, rather than replace, the Ethernet network. Through our end-user interviews, Dell’Oro Group learned that the majority of wireless LAN deployments are in areas where Ethernet never existed, such as common areas in the Education sector, public areas in government buildings, museums, and shopping malls.

Wireless LAN access points have reached a significant level—annual shipments worldwide are in the tens of thousands of units—and they all need to connect to the Ethernet network.  This has driven Ethernet switch port shipments. Previews of 802.11ax access-point configurations indicate that a single port of NBASE-T will be incorporated at all price points, from the highest end to the lower-mid-range products with one port 5.0 Gbps at the high end and 2.5 Gbps into the lower-mid-range products.  We estimate that these segments capture approximately 50% of the market volume.  1 Gbps Ethernet will be the secondary port on high- and-mid-range product, and will dominate the low-end access points.

Wireless LAN will become an accelerator

As wireless LAN access points connect into the network at 2.5-and-5.0 Gbps, switches in the next layer of aggregation will likely need to be replaced with higher speeds.  This will cause a cascade effect through the network.  NBASE-T currently commands a price premium over 1 Gbps, which will have an accelerating effect on switch sales.

The penetration rate of 802.11ax will be much faster than previous technologies

Manufacturers are launching mid-range to lower-range 802.11ax products in addition to high-end.  This contrasts with the product launch plans of previous technologies such as 802.11ac and 802.11n.  The implications are much wider range of products will be available and price sensitive users will enter the market sooner.  The price premium will be lower on the 802.11ax technology vs. 802.11ac.  As a result, we predict 802.11ax will have a faster market penetration.

In our next blog, we’ll continue to explore another disruption – China may not lag adoption.

Related links:

[wp_tech_share]

The Huawei Connect 2018 was held in Shanghai on October 10 to 12 and over 20,000 attendees from different countries were at this event. It was a fascinating week led by Huawei key leaders sharing their Artificial Intelligence (AI) strategy along with its vision of an AI powered intelligent world.  For this event, I was looking forward to seeing how Huawei is transforming itself from primarily a provider of IT hardware solutions, to a provider of full-stack cloud services and applications.

Given that my interest lies in the areas of compute, server network connectivity, and cloud data center infrastructure, here are my main takeaways from the event:

AI Chips: Huawei launched the Ascend 910 and Ascend 310 at Huawei Connect 2018, aimed at accelerating AI workloads. The Ascend 910 is designed for the core data center, whereas the Ascend 310 is suitable for low-power edge computing. Both chips are designed by Hisilicon, a company owned by Huawei.  The Ascend announcement is groundbreaking because this is a rare instance in which a manufacturer is able to launch a viable alternative to accelerated processors, such as the GPU from NVidia, or FPGA from Intel or Xilinx, for AI workloads. Google, through its huge engineering resources, have also deployed its own accelerated processor, called the TPU, in its data centers. However, Huawei claims that a cluster of Ascend 910 can even outperform a comparable pod of TPU3, by a factor of 2.5X in floating point operations. More importantly, this is the first time in which a Chinese manufacturer has developed a seemingly competitive accelerated processor, and is aligned with China’s long-term goal of becoming self-reliant in the IT hardware market.  I believe the inclusion of another silicon vendor for accelerated chip sets, especially a foreign one, will drive additional innovation and adoption for AI technologies.

Smart NIC: Huawei announced a Smart NIC with an ASIC, also powered by Hisilicon, for applications such as offloading TCP/IP from the CPU. Initially this Smart NIC will likely be deployed in Huawei’s own cloud servers, but could eventually be sold alongside Huawei’s compute and storage portfolio to Huawei’s enterprise customers.  The Smart NIC market started to heat up in 2018 with no fewer than six major network adapter vendors, such as Intel, Broadcom, Mellanox, announcing or qualifying new products.  Smart NIC deployment is currently still fragmented and limited only to several hyperscalers.  I question whether or not the benefits Smart NICs could outweigh its high price premium and power consumption, which are factors inhibiting more wide-spread deployment of Smart NICs in the data center. However, Huawei’s vertical integration efforts might justify the economics of deploying Smart NIC in its cloud data centers.

Cloud Infrastructure: Huawei has been ramping and advancing its infrastructure to better compete against other public cloud providers, such as Alibaba Cloud. Currently, Huawei operates data centers worldwide, and is in the process of developing state-of-art modular data centers with redundant availability zones, and to optimize utilization and improve efficiencies.  In terms of absolute scale, Huawei has a long ways to go before catching up to other hyperscalers in terms of capacity.  However, I believe that Huawei is in a strong position to grow its public cloud business given the company’s penetration in enterprise accounts, and the only vendor to have an integrated cloud platform, from accelerated processors, to a global network of cloud data centers.

While the adoption of AI technologies is still nascent, its growth has been explosive with numerous potential applications that could change our daily lives.  Smart NIC is another area in which I am closely tracking.  It remains to be seen whether or not Huawei’s internal development of its Smart NIC will pay off and drive a strong use case.  For the next Huawei Connect event, I am looking forward to advances in the development and deployment of Huawei’s own silicon solutions in the fabric of Huawei’s future generation of data centers.

To learn more about my current market research coverage:

[wp_tech_share]

I attended the MEF18 conference this week in Los Angeles and had the opportunity to meet and interact with key industry stakeholders and experts.  I was also a judge for the 2018 MEF Awards.  This year, MEF announced the availability of a draft technical specification for SD-WAN service standardization. Through my SD-WAN market research, I have seen the SD-WAN ecosystem expand so rapidly over the past several years. On one hand, SD-WAN’s popularity is driving great innovation, but on the other hand, it is creating an overcrowded and confusing market place. It is good to see MEF getting behind SD-WAN service standardization, as this is the type of work needed to smooth out the challenges of deploying SD-WAN services and to accelerate the service adoption. There is a lot of work to be done on SD-WAN service standards, but we will be watching the progress with great interest.

Related links:

[wp_tech_share]

On Tuesday, June 26, I presented a webinar introducing the 802.3bt™ Power over Ethernet (PoE), hosted by Dell’Oro Group and Ethernet Alliance.  Chad Jones with Cisco and David Tremblay with HPE were my partner speakers at this webinar.

PoE has already become the go-to for devices requiring low-voltage power. Coupled with emerging Internet of Things (IoT) devices like security cameras, medical devices, LED lighting, and more, the PoE application space is booming. With the ratification of IEEE 802.3.bt™ getting closer, the “Introducing IEEE 802.3bt™ Power over Ethernet” Webinar offers clarity on what to expect from this innovative technology.

To recap this webinar, we talked about:

  • What is Power Over Ethernet?
  • What are the different classes and types and how they all work together?
  • What are the different applications and devices driving PoE requirement?
  • How big is the PoE market opportunity from a device perspective?
  • How big is the PoE market opportunity from a switching perspective?
  • How many PoE switch ports do we expect over the next five years?
  • What are the new PoE requirements of new devices and how are the PoE requirements of traditional devices changing?
  • What are the new features and the new power levels of IEEE 802.3bt™?
  • Importance of interoperability testing and certification

Need a refresher?  Missed the webinar?  Click this link to watch the webinar recording.

I hope you can find this webinar valuable to you and get a lot out of it.

Enjoy!